# ECCV2-0VAG1-F0

### Characters

#### Features:

- High radiant flux
- Long operation life
- Lambertian radiation

## **Applications:**

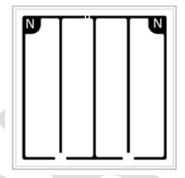
- Printing
- Curing

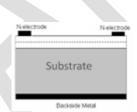
### **Dimension**

## **Chip Size:**

- 43 mil x 43 mil

 $(1090\pm25 \mu m \times 1090\pm25 \mu m)$ 


Thickness: 6.3 mil (160 $\pm$ 25 um)


- Bonding pad: 4.7 mil (120 $\pm$ 10  $\mu$ m)

#### **Metallization:**

- Topside N electrode: Au alloy

- Backside metal: Au alloy





## Electro-optical Characteristics (Ta=25°C (1)):

| Parameter                      | Symbol | Condition   | Min. | Тур.  | Max.  | Unit |
|--------------------------------|--------|-------------|------|-------|-------|------|
| Forward Voltage                | Vf1    | If = 10μA   | 1.6  | -     | -     | V    |
|                                | Vf2    | If = 1000mA | -    | (3.6) | 3.7   | V    |
| Peak Wavelength <sup>(2)</sup> | λр     | If = 1000mA | 390  | -     | 397.5 | nm   |
| Spectra Half-width             | Δλ     | If = 1000mA | -    | (15)  | -     | nm   |
| Radiant Flux <sup>(3)(4)</sup> | Po     | If = 1000mA | 1550 | -     | 1600  | - mW |
|                                |        |             | 1600 | -     | 1650  |      |
|                                |        |             | 1650 | -     | 1700  |      |
|                                |        |             | 1700 | -     | 1750  |      |

#### Note:

- (1) ESD protection during chip handling is recommended.
- $(2) \ Basically, the \ wavelength \ span \ is \ 10 nm; \ however, \ customers, \ special \ requirements \ are \ also \ welcome.$
- (3) Radiant flux is determined by using an Ag-plated TO-can header without an encapsulate
- (4) Radiant flux measurement allows a tolerance of ±15%.



## **Absolute Maximum Ratings:**

| Parameter                    | Symbol | Condition                   | Rating      | Unit |
|------------------------------|--------|-----------------------------|-------------|------|
| Forward DC Current           | lf     | Ta = 25°C                   | ≤ 1000      | mA   |
| Junction Temperature         | Tj     | -                           | ≤ 125       | °C   |
| Storage Temperature          | Tstg   | Chip                        | - 40 ~ + 85 | °C   |
|                              |        | Chip-on-tape/storage        | 5 ~ 35      | °C   |
|                              |        | Chip-on-tape/transportation | - 20 ~ + 65 | °C   |
| Temperature during Packaging | -      | -                           | 280(<10sec) | °C   |

Note: Maximum ratings are package dependent. The above maximum ratings were determined using a Metal Core Printed Circuit Board (MCPCB) without an encapsulate. Stresses in excess of the absolute maximum ratings such as forward current and junction temperature may cause damage to the LED.

## **Characteristic Curves:**

Fig.1 – Relative luminous Intensity vs. Forward Current

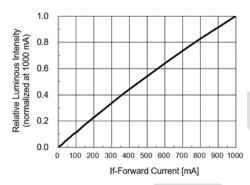



Fig.3 – Relative Intensity (@1000mA) vs. Ambient Temperature

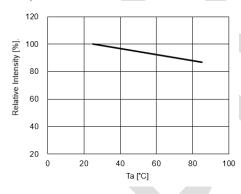



Fig.5 – Peak Wavelength (@1000mA) vs. Ambient Temperature

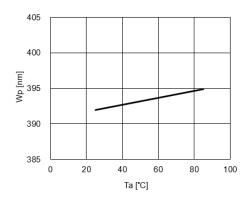



Fig.2 – Forward Current vs. Forward Voltage

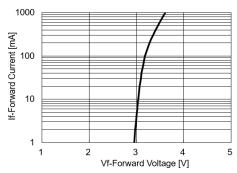



Fig.4 – Forward Voltage (@1000mA) vs. Ambient Temperature

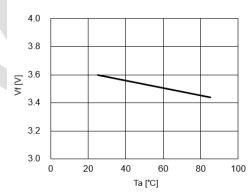
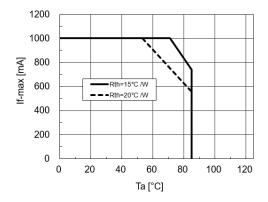




Fig.6 – Maximum Driving Forward DC Current vs. Ambient Temperature (De-rating based on Tj max. = 125°C)



